# Secondary mould metabolites: Part 53.<sup>1</sup> Transformation of the protoilludane sesquiterpene tsugicoline A into a sterpurane derivative and its microbiological reduction

## Alberto Arnone, Cristiana De Gregorio, Gianluca Nasini\* and Orso Vajna De Pava

Dipartimento di Chimica del Politecnico, Centro del CNR per le Sostanze Organiche Naturali, Politecnico di Milano, via Mancinelli 7, I-20131, Milano, Italy



Tsugicoline A 1 is transformed into the sterpurane derivative 3a at pH 7–8; its structure and stereochemistry are elucidated by means of NMR studies. The isolation of compound 3a is the first example of the conversion of a protoilludane into a sterpurane sesquiterpene; biotransformation of compounds 1 and 3a gives the dihydro derivatives 2 and 4c, respectively. A compound similar to clavicoronic acid has also been isolated starting from compound 1.

In the course of a programme aimed at identifying new bioactive metabolites produced by specific strains of microorganisms, we have studied *Laurilia* spp. (Basidiomycetae). From *Laurilia sulcata* we have isolated sulcatine B, a  $\Delta^5$ -protoilludene-2,3-diol sesquiterpene, and sulcatines C and D, new norisoilludalane derivatives.<sup>2</sup> The growth of a strain of *L. tsugicola*, in liquid culture, gave tsugicoline A **1** in high yield (0.8 g 1<sup>-1</sup>). We have carried out chemical reactions on this metabolite in the presence of different nucleophiles, since the  $\alpha$ , $\beta$ -unsaturated carbonyl moiety present was expected to behave as a Michael acceptor.<sup>3</sup> Subsequently, we have submitted tsugicoline A **1** to biotransformation.

The treatment of tsugicoline A with baker's yeast or *Aspergillus niger* to reduce the carbonyl group was unsuccessful. In contrast tsugicoline A **1**, in liquid cultures with *Bacillus megaterium* as a biocatalyst (Table 2), gave after 4 days products **2** and **3a** in a 1:2.5 ratio (yield 50%).

The structure of compound **2** was readily assigned since it was identical with the major product obtained by reduction with NaBH<sub>4</sub> of **1**<sup>3</sup> while compound **3a** was identified as a sterpurane derivative on the basis of chemical and NMR evidence. It was isolated as a white powder, mp 95–98 °C (CH<sub>2</sub>Cl<sub>2</sub>–hexane);  $[a]_D$  +42 (*c* 0.1 in MeOH) and gave an analysis consistent with the molecular formula C<sub>15</sub>H<sub>22</sub>O<sub>4</sub>; chemical ionization mass spectrometry (isobutane) gave a distinct peak at *m*/*z* 267 (MH<sup>+</sup>). The IR spectrum (liquid film) revealed a large absorption at 1730 cm<sup>-1</sup> (CO), and the UV spectrum [ $\lambda_{max}$ -(EtOH) 258 nm ( $\epsilon$  7900)] was consistent with the presence of a conjugated system.

<sup>13</sup>C NMR experiments carried out on **3a** indicated that the carbons of metabolites **1** and **3a** have the same multiplicities but different chemical-shifts, especially pronounced for the resonances of the  $\alpha$ ,β-unsaturated ketonic group and for those of the carbons in close proximity. The <sup>1</sup>H NMR analysis (Table 1) of **3a** confirmed the presence of a cyclopentane moiety bearing two methyl groups at C-11 and a CHOH unit at C-13; moreover, the downfield shift exhibited by the 8-methyl protons, when compared with their chemical shift values in compound **1**, suggested that they are situated on a double bond while the concomitant upfield shift of the 1-methylene protons with the variation of the <sup>2</sup>J from 16.0 to 11.3 Hz indicated that they are no longer allylic. The formation of the triacetate **3b** caused a downfield shift for the 1-H<sub>2</sub>, 3-H and 6-H protons, and thus supported the presence in **3a** of three OH groups.

The NOEs found for **3b** allowed us to assign the absolute stereochemistry of the newly formed stereocentres C-2 and C-6.

In fact, the mutual NOEs observed between 9-H and 13-H (6.5 and 7%), in a  $\beta$  disposition in the formula, confirmed their *cis* relationship while the NOEs observed for 3-H (7%) as well as for 10 $\alpha$ -H (2.5%) and 12 $\alpha$ -H (11%), which presented *trans* diaxial couplings with 9 $\beta$ -H and 13 $\beta$ -H, upon irradiation of 1-H<sub>2</sub> indicated that these protons are on the same  $\alpha$ -face of the molecule. Finally, the small mutual NOEs observed between 1-H<sub>2</sub> and 6-H (1.5 and 0.5%) suggested that these protons are in a *trans* disposition (see Experimental section).

NaBH<sub>4</sub> reduction of **3a** afforded **4a** and **4c** in a 9:1 ratio. On acetylation these gave the corresponding tetraacetates **4b** and **4d**. The mutual NOEs observed in **4b** between 1a-H and 5-H (3 and 4%) indicated their *cis* relationship while smaller NOEs (0.5%) were observed between the *trans* disposed 1-H<sub>2</sub> and 6-H protons.

A screening of several fungi and bacteria was performed successively on tsugicoline A **1** (see Table 2); in one case (*Diplodia gossypina*) the substrate afforded **4c**, together with **3a**, through the stereospecific reduction of the carbonyl function.

Compound **3a** was easily obtained in high yields from **1** with a wide range of bioagents and in cultures which, during fermentation, become weakly basic; this is not the case when the medium was slightly acidic (*i.e. A. niger* and baker's yeast) suggesting that the process was not a biological but a chemical reaction whose course is pH dependent (obviously this is not the case for the formation of compounds **2** and **4c**). In fact, tsugicoline A **1** dissolved in a buffer solution at pH 8 at room temperature and was completely converted after 4 days (the

|             | $\delta_{\mathrm{H}}$    | $\delta_{\mathbf{H}}$         |                        |                        |                                |                        |                          |      |
|-------------|--------------------------|-------------------------------|------------------------|------------------------|--------------------------------|------------------------|--------------------------|------|
| Proto       | 1 <b>3a</b> <sup>a</sup> | <b>3b</b> <sup><i>a</i></sup> | <b>4a</b> <sup>b</sup> | <b>4b</b> <sup>c</sup> | <b>4</b> c <sup><i>a</i></sup> | <b>4d</b> <sup>c</sup> | $J_{\mathrm{H,H}}$       | 3a   |
| 1a          | 3.94                     | 4.29                          | 3.97                   | 4.27                   | 4.08                           | 4.75                   | 1a, 1b                   | 11.3 |
| 1b          | 3.78                     | 4.23                          | 3.54                   | 4.13                   | 3.63                           | 4.16                   | 1a, 1-OH                 | 6.5  |
| 3           | 4.17                     | 5.32                          | 4.13                   | 5.13                   | 3.89                           | 5.23                   | 1b, 1-OH                 | 6.5  |
| 5           |                          |                               | 4.70                   | 5.97                   | 4.63                           | 5.78                   | 1b, 6                    | 0.6  |
| 6           | 4.96                     | 5.69                          | 4.38                   | 5.17                   | 4.47                           | 5.24                   | 3, 13                    | 1.3  |
| 8           | 1.94                     | 2.07                          | 1.74                   | 1.71                   | 1.67                           | 1.81                   | 3, 3-OH                  | 5.0  |
| 9           | 2.85                     | 2.99                          | 2.57                   | 2.64                   | 2.60                           | 2.66                   | 6, 6-OH                  | 7.5  |
| 10α         | 1.05                     | 1.15                          | 0.95                   | 1.02                   | 0.96                           | 1.00                   | 8, 9                     | 0.6  |
| <b>10</b> β | 2.04                     | 2.11                          | 1.91                   | 1.95                   | 1.91                           | 1.98                   | 9, 10α                   | 10.9 |
| 12α         | 1.51                     | 1.55                          | 1.47                   | 1.36                   | 1.50                           | 1.35                   | 9, 10β                   | 8.0  |
| 12β         | 1.75                     | 1.85                          | 1.70                   | 1.83                   | 1.68                           | 1.82                   | 9, 13                    | 9.7  |
| 13          | 2.58                     | 2.58                          | 2.50                   | 2.43                   | 2.56                           | 2.51                   | 10α, 10β                 | 12.5 |
| 14          | 1.05                     | 1.09                          | 1.02                   | 1.04                   | 1.03                           | 1.05                   | 10α, 15 <sup>°</sup>     | 0.8  |
| 15          | 1.01                     | 1.02                          | 0.97                   | 0.94                   | 0.94                           | 0.94                   | <b>10</b> β, <b>12</b> β | 2.0  |
| 1-OR        | 3.76                     | 2.05 <sup>d</sup>             | е                      | 2.13 <sup>d</sup>      | 3.51                           | 2.13 <sup>d</sup>      | $12\alpha, 12\beta$      | 12.7 |
| 3-OR        | 3.95                     | $2.02^{d}$                    | е                      | 2.11 <sup>d</sup>      | 3.93                           | $2.08^{d}$             | 12α, 13 <sup>°</sup>     | 12.3 |
| 5-OR        |                          |                               | е                      | $2.08^{d}$             | 4.53                           | 2.07 <sup>d</sup>      | 12α, 15                  | 0.8  |
| 6-OR        | 4.92                     | $2.00^{d}$                    | е                      | 2.02 <sup>d</sup>      | 3.93                           | 2.00 <sup>d</sup>      | 12β, 13                  | 8.4  |

<sup>*a*</sup> In [<sup>2</sup>H<sub>6</sub>]acetone. <sup>*b*</sup> In [<sup>2</sup>H<sub>6</sub>]acetone + D<sub>2</sub>O. <sup>*c*</sup> In CDCl<sub>3</sub>. <sup>*d*</sup> Assignments may be interchanged. <sup>*c*</sup> Not assigned. <sup>*f*</sup> Compounds **4a**, **4b**, **4c** and **4d** exhibited  $J_{5,6}$  5.5, 5.8, 5.5 and 5.8 Hz respectively.

 Table 2
 Microbial transformations of tsugicoline A 1

| R                     | Cun | Microorganism                                                                                                                                                       | Conversion (%)                | Metabolites (%)                                                                        |                   |  |
|-----------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------|-------------------|--|
| 1<br>2<br>3<br>4<br>5 |     | Bacillus megaterium DSM 32<br>Rhodococcus rhodocrous ATCC 990<br>Beauveria bassiana ATCC 7159<br>Diploidia gossypina ATCC 10936<br>Chaetomium cochliodes ATCC 10195 | 50<br>100<br>100<br>70<br>100 | <b>3a</b> (70)<br><b>3a</b> (60)<br><b>3a</b> (45)<br><b>3a</b> (65)<br><b>3a</b> (25) | <b>2</b> (30)<br> |  |



time of incubation) into compound **3a**, probably *via* the intermediate **5** (see Scheme 1).

The isolation of compound **3a** is, to the best of our knowledge, the first example of the conversion of a protoilludane into a sterpurane and this confirms the important role played by the protoilludanes in the complex biosynthetic pathways of the sesquiterpenoids from Basidiomycetes.<sup>4</sup> The presence of sterpuranes is restricted to the fungi of the genus *Stereum purpureum*<sup>4</sup> and *Merullius tremellosus*<sup>5</sup> and they are considered the causative agents of the so called 'silver leaf disease' in fruit trees. From a biogenetic point of view, the occurrence of compound **3a** suggests that the sterpuranes may arise directly from protoilludanes (path e) rather than by the proposed pathways (a + d) and (b + c) (Scheme 2).<sup>4,6</sup>

Treatment of tsugicoline A **1** with 10% KOH in MeOH gave, after acidification, compound **6a**, isolated as methyl ester **6b**. The <sup>1</sup>H and <sup>13</sup>C NMR spectra of compound **6b** (see Experimental section) agreed with the proposed structure, presenting signals attributable to a  $-C=CH_2$  unit and to a Me $-C=C-CO-CO_2Me$  grouping; the remaining resonances being assigned to the cyclopentane ring moiety having, as in the starting compound **1**, two methyl groups at C-11 and a CHOH moiety at C-13.

Compound **6a** possesses a structure similar to that exhibited by clavacoronic acid **8**; the latter compound, which acts as an







inhibitor of reverse transcriptases, was isolated from the Basidiomycete *Clavicorona pyxidata*, and its formation was ascribed to the fragmentative opening of the cyclobutane ring

and subsequent oxidation of the hypothetical intermediate 7 (Scheme 3).<sup>7</sup> Since the sterpurane **3a** gave an intractable mixture with 10% KOH– $CH_2N_2$  (see Experimental section as for compound **6b**), we believe that acid **6a** arises from the protoilludane **1** *via* an oxidative process on the intermediate **5**, followed by elimination of water, and not from **3a**. Finally, it must also be noted that the clavacoronic acid **8** may derive from **1a** through an analogous mechanism.

Work is in progress to identify some minor compounds obtained from the reaction of compound **1** under more controlled basic conditions.

### **Experimental**

Mps were determined on a Kofler apparatus and are uncorrected. IR and UV spectra were recorded with a Perkin-Elmer 177 instrument and a JASCO Uvidec-510 spectrophotometer, respectively; optical rotations were obtained on a JASCO Dip-181 polarimeter and values are given in  $10^{-1}$  deg cm<sup>2</sup> g<sup>-1</sup>; mass spectra were obtained with a Finnigan-MATT TSQ70 spectrometer. NMR spectra were acquired on a Bruker AC 250L spectrometer operating at 250.1 MHz for <sup>1</sup>H and 62.9 MHz for <sup>13</sup>C. Chemical shifts are in ppm ( $\delta$ ) from SiMe<sub>4</sub> as internal standard, and *J* values are given in Hz. TLC and PLC were performed with Merck HF<sub>254</sub> silica gel.

#### Isolation and purification of compounds 2, 3a and 4c

Each microorganism (see Table 2) was grown for 2 days at 28 °C in shaken Erlenmeyer flasks (250 cm<sup>3</sup>) at 140 rev min<sup>-1</sup> containing the YMP medium [yeast extract (3 g 1<sup>-1</sup>), malt extract (2 g  $1^{-1}$ ) and peptone (10 g  $1^{-1}$ ); 50 cm<sup>3</sup>]. Metabolite  $1^{3}$ (according to a standard procedure; 20 mg per flask) dissolved in DMSO (100  $\mu$ l) was added to the grown culture and the incubation was continued for 4 days. Each resulting mixture was extracted with ethyl acetate, and the combined organic phases were dried and evaporated under reduced pressure; the composition of each crude residue was determined by TLC; PLC in CH<sub>2</sub>Cl<sub>2</sub>-MeOH (9:1) was carried out for each extract. The fractions containing compound 3a were collected. Alternatively, the metabolite 1 (10 mg), dissolved in DMSO (50  $\mu$ l) was added to phosphate buffer (5 cm<sup>3</sup>), at pH 7, 7.5 and 8, respectively, at room temperature; after 4 days the % of conversion into compound 3a was: pH 7 (40%), 7.5 (70) and 8 (95). Compound 3a (Found: C, 67.4; H, 8.3. C<sub>15</sub>H<sub>22</sub>O<sub>4</sub> requires C, 67.64; H, 8.33%); m/z (CI, isobutane), 267 (MH+, 20%), 249 (100), 231 (58) and 203 (32);  $\delta_{\rm C}({\rm CDCl_3})$ : 64.21 (t, C-1), 51.80 (s, C-2), 68.88 (d, C-3), 113.81 (s, C-4), 200.21 (s, C-5), 82.71 (d, C-6), 147.95 (s, C-7), 21.08 (q, C-8), 42.83 (d, C-9), 49.50 (t, C-10), 38.80 (s, C-11), 46.10 (t, C-12), 46.68 (d, C-13), 29.26 (q, C-14) and 26.54 (q, C-15). <sup>1</sup>H NMR spectroscopic data are reported in Table 1.

Compounds **2** and **4c** obtained from biotransformations with *B. megaterium* and *D. gossypina* were identical (TLC and <sup>1</sup>H NMR) with samples isolated by NaBH<sub>4</sub> reduction of tsugicoline A  $1^3$  and sterpurane **3a**, respectively (see below).

#### Acetylation of compound 3a

Compound **3a** (15 mg) was dissolved in dry pyridine (0.3 cm<sup>3</sup>) containing Ac<sub>2</sub>O (0.6 cm<sup>3</sup>) and the solution was kept at 0 °C for 6 h. The mixture was then poured into ice–water and extracted with CH<sub>2</sub>Cl<sub>2</sub>. Evaporation of the extract followed by PLC in hexane–EtOAc (2:1) of the residue gave the triacetate **3b** as an oil: m/z (FAB, thioglycerine), 393 (MH<sup>+</sup>, 40%), 351 (25), 322 (40), 307 (48), 273 (37) and 231 (33); <sup>1</sup>H NMR data are in Table 1; NOE experiments: {1-H<sub>2</sub>} enhanced 3-H (7%), 6-H (1.5%), 10α-H (2.5%), 12α-H (11%); {3-H} enhanced 1-H<sub>2</sub> (1.5%), 6-H (2.5%), 12α-H (2.5%), 12β-H (1.5%), 13-H (5%); {6-H}

enhanced  $1-H_2$  (0.5%), 3-H (1.5%);  $\{9-H\}$  enhanced  $8-H_3$  (1.5%),  $10\beta-H$  (4%), 13-H (6.5%),  $15-H_3$  (1%);  $\{13-H\}$  enhanced 3-H (4.5%), 9-H (7%),  $12\beta-H$  (3.5%) and  $15-H_3$  (1%).

#### **Reduction of compound 3a**

Sterpurane **3a** (100 mg) was treated with NaBH<sub>4</sub> (20 mg) in MeOH (5 cm<sup>3</sup>); work-up gave a 90:10 mixture of two compounds, which were purified by PLC in EtOAc (2 runs) and identified as compound **4a** (70 mg),  $R_{\rm f}$  0.15, and its C-5 epimer **4c** (8 mg),  $R_{\rm f}$  0.2. The compounds were acetylated as above to yield after PLC purification the tetraacetyl derivatives **4b** and **4d**, respectively.

#### Compounds 4a-d

Compound **4a** was isolated as a solid, mp >300 °C (decomp.) (Found: C, 67.0; H, 8.9.  $C_{15}H_{24}O_4$  requires C, 67.13; H, 9.02%); *m/z* (CI-isobutane) 267 (M<sup>+</sup> - 1, 35%), 251 (13), 249 (27), 233 (100) and 203 (20). Compound **4b** as an oil; *m/z* (CI) 437 (MH<sup>+</sup>, 4%), 436 (M<sup>+</sup>, 8), 377 (MH<sup>+</sup> - 60, 100), 334 (10), 317 (18) and 257 (10). Compound **4c**, solid, mp 280 °C (decomp.); *m/z* (CI) 251 (MH<sup>+</sup> - 18, 22%), 249 (35), 233 (MH<sup>+</sup> - 32, 100), 203 (23) and 187 (10); *m/z* (EI), 233, 221, 203 (base peak), 189, 175 and 161; *m/z* (FAB), 269 (MH<sup>+</sup>). Compound **4d** as an oil; *m/z* (CI) 437 (MH<sup>+</sup>, 377). <sup>1</sup>H NMR data for the compounds **4a,b,c,d** are listed in Table 1.

#### **Compound 6b**

Tsugicoline A 1 (100 mg) was dissolved in MeOH (5 cm<sup>3</sup>) and treated with 10% KOH (5 cm<sup>3</sup>) for 3 h at room temp.; the mixture was concentrated by solvent evaporation after which it was acidified and extracted with EtOAc; to the residue a solution of CH<sub>2</sub>N<sub>2</sub> in diethyl ether was added. PLC of the mixture on hexane-EtOAc (2:1) gave compound 6b (16 mg) as an oil [Found: *m/z* (HREI) 278.1572. C<sub>16</sub>H<sub>22</sub>O<sub>4</sub> requires 278.1518];  $\delta_{\rm H}({\rm CDCl}_3)$ : 5.13 and 4.79 (2 H, br s, 1-H<sub>2</sub>), 4.14 (1 H, d, J 4.3, 3-H), 3.85 (3 H, s, OMe), 2.91 (1 H, br ddd, J10.0, 8.8 and 8.3, 9-H), 2.54 (1 H, dddd, J10.5, 8.8, 7.5 and 4.3, 13-H), 2.00 (1 H, br, OH), 1.97 (1 H, ddd, J12.4, 8.3 and 2.0, 10β-H), 1.95 (3 H, br s, 8-H<sub>3</sub>), 1.62 (1 H, ddd, J12.5, 7.5 and 2.0, 12β-H), 1.16 (1 H, br dd, J12.5 and 10.5, 12α-H), 1.15 (1 H, br dd, J12.4 and 10.0, 10a-H), 1.04 (3 H, s, 14-H<sub>3</sub>) and 1.02 (3 H, br s, 15-H<sub>3</sub>);  $\delta_{\rm C}({\rm CDCl_3})$  187.26 (s, C-5), 163.85 (s, C-6), 154.72 and 127.78 (s, C-4 and C-7), 141.85 (s, C-2), 112.45 (t, C-1), 73.69 (d, C-3), 52.93 (q, OMe), 47.22 and 44.03 (t, C-10 and C-12), 44.03 and 43.61 (d, C-9 and C-13), 37.91 (s, C-11), 29.19 and 27.58 (q, C-14 and C-1) and 19.91 (q, C-8).

#### References

- 1 Part 52, A. Arnone, S. Capelli, G. Nasini, S. V. Meille and O. Vajna de Pava, *Leibigs Ann. Chem.*, 1996, 1875.
- 2 A. Arnone, G. Nasini, O. Vajna de Pava and G. Assante, J. Chem. Soc., Perkin Trans. 1, 1992, 615 and references therein.
- 3 A. Arnone, U. Brambilla, G. Nasini and O. Vajna de Pava, *Tetrahedron*, 1995, **51**, 13 357; A. Arnone, G. Nasini, S. V. Meille and O. Vajna de Pava, 20th IUPAC Symposium on the Chemistry of Natural Products, September 15–20, 1996, Chicago, SE 45.
- 4 W. A. Ayer and L. M. Browne, *Tetrahedron*, 1981, 37, 2199.
- 5 O. Sterner, T. Anke, W. S. Sheldrich and W. Steglich, *Tetrahedron*, 1990, 46, 2389.
- 6 C. Abel and A. P. Leech, *Tetrahedron Lett.*, 1988, **29**, 4337 and references therein.
- 7 G. Erkel, T. Anke, A. Gimenez and W. Steglich, *J. Antibiot.*, 1992, **45**, 29.

Paper 6/08174F Received 3rd December 1996 Accepted 14th January 1997